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ABSTRACT 
The increasing demand for a robust science, technology, engineering, and mathematics (STEM) workforce 
highlights the need to understand factors that enhance student success in STEM fields. Despite significant need for 
STEM-qualified individuals, less than half of students initially expressing STEM interest upon college entry graduate 
with a STEM degree, dropping lower for underrepresented students. The Learning Assistant (LA) program, 
implemented at colleges around the world, involves students (LAs) aiding their peers through evidence based 
collaborative activities in STEM courses. It has been well documented that LAs are associated with short-term 
student success (lower course failure rates) and long-term student success (higher graduation rates). In this study 
we investigate the impact of the LA program on student success in introductory STEM courses. We analyzed over 
10 years of student data, focusing on DFW (D, F, or withdraw) and six-year graduation rates. Using logistic regression 
and hierarchical linear models, we assessed the influence of LA support on student outcomes, with particular 
attention to marginalized demographics and repeated LA exposure. We show that LA-supported students in 
introductory physics courses experienced a 7% decrease in DFW rates. Notably, underrepresented students saw a 
10% reduction in DFW rates. Additionally, repeated LA exposure in physics courses provided greater benefits for 
DFW rates compared to single-course exposure. This research underscores the importance of LA programs in 
improving STEM education outcomes, notably for underrepresented students. 
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INTRODUCTION 

In an era of rapid technological advancements, the demand for a 
robust science, technology, engineering, and mathematics (STEM) 
workforce is critical for driving innovation in the US (National Science 
Foundation, 2023). A study conducted in 2020 by the Center for 
Strategic and International Studies highlighted the economic 
advantages of pursuing a STEM career (Athanasia & Cota, 2022). Even 
with the incentive of generally competitive salaries, as of this writing, 
there is a shortage of STEM graduates compared to the number of 
current STEM jobs (Boggs et al., 2022). The recent CSIS study also 
found that STEM fields account for nearly 30% of current US job 
openings in many major metropolitan areas, yet only 11% of the US 
population holds a STEM degree on average (Athanasia & Cota, 2022). 
Furthermore, this scarcity not only jeopardizes the competitiveness of 
US industries but also has the potential to prompt companies to 
offshore operations or intensify automation efforts in production 
(Athanasia & Cota, 2022). In order to meet these workforce needs, it is 
important to understand factors that contribute to student success in 
STEM education. 

It has been well-documented that underrepresented minority 
students, as well as women and first-generation (FG) students in STEM 
majors, face additional barriers to success when pursuing STEM 
degrees in the US (Estrada et al., 2016; Van Dusen & Nissen, 2020). In 
the US, fewer than 40% of students who initially express an interest in 
STEM successfully obtain a STEM degree, dropping to 20% for 
underrepresented students (Freeman et al., 2014). This disparity is 
particularly acute among typically underrepresented minority groups, 
including African American, Latino American, and Native American 
(AALANA) students (Grossman & Porche, 2014). Gender barriers 
within STEM fields further compound these challenges. Despite 
increases in women attaining degrees in biology and social and 
behavioral sciences, studies have found disproportionately higher 
representation of men in fields such as physics, engineering, 
mathematics, and computer science (Grossman & Porche, 2014; 
Swafford & Anderson, 2020). Being an FG student is also regarded as a 
barrier to success. An FG college student is typically defined as someone 
whose parents have not obtained a bachelor’s degree or higher before 
the student has enrolled in college (FirstGen Forward, 2024). On the 
other hand, continuing-generation (CG) college students come from 
families where at least one parent has completed a bachelor’s degree or 
higher. FG students account for 15.9% of incoming college freshmen on 
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average (Allen et al., 2015). Previous work has found that 
undergraduate FG students exhibit a decreased inclination to choose a 
STEM major and are more prone to switching from initial STEM 
interest to a non-STEM degree compared to their CG counterparts 
(Allen et al., 2015). Further studies have found that FG students 
generally have higher DFW (D, F, or withdraw) rates and lower six-
year graduation (SYG) rates (Tedeschi et al., 2023; Van Dusen & Nissen, 
2020). Considering the studies emphasizing the necessity for an 
increase in STEM major graduates, it is essential to identify strategies 
that enhance success for students from disadvantaged groups. 

The use of quantitative analysis methods to study factors related to 
student academic success in STEM degrees has received significant 
attention from educational researchers, especially given the continuous 
advancements in technology (Radunzel et al., 2016; Tedeschi et al., 
2023; Van Dusen & Nissen, 2020). One key metric used to gauge student 
achievement in STEM courses (or programs) is the percentage of 
students who earn DFW from the course (DFW rate). Many studies 
have assessed the impact of different educational interventions on 
student learning outcomes by using the DFW rate as a response variable 
to quantify these impacts (Ake-Little et al., 2020; Raimondo et al., 1990; 
Stover & Ziswiler, 2017; Van Dusen & Nissen, 2020). Another common 
measure of student success is the SYG rate, which tracks the percentage 
of matriculated students who complete their degree within six years of 
initial enrollment. Similar to the DFW rate, the SYG rate can serve as 
a response variable for assessing the impact of different educational 
interventions on students’ academic performance (Boumi & Vela, 2021; 
Tedeschi et al., 2023). Figure 1 illustrates a student’s academic journey 
where the DFW rate can be considered as a short-term metric of success 
and the SYG rate is a long-term metric of success. 

There has been extensive research presenting strong evidence of 
improvement in student performance within STEM courses through 
the implementation of active learning strategies (Barrasso & Spilios, 
2021; Freeman et al., 2014; Von Korff et al., 2016). In these studies, 
student performance is commonly measured through DFW and SYG 
rates. One effective academic intervention employed in institutions 
across the US that promotes the use of active learning pedagogies is the 
Learning Assistant (LA) model. The LA model isn’t a pedagogy itself 
but rather enables instructors to incorporate active learning pedagogies 
into their classrooms. The LA model involves students (LAs) aiding 

their peers through evidence-based collaborative activities in the 
classroom and during out-of-class help sessions. The LA model includes 
a pedagogy seminar course that covers a variety of teaching techniques, 
an assistant position within designated laboratory or lecture classes, and 
regular meetings with faculty mentors associated with the course 
(Breland et al., 2023). LAs work closely with faculty mentors to 
implement teaching activities and strategies that work best for their 
courses and disciplines. The LA model is currently used in more than 
500 institutions worldwide and is incorporated into classes with the 
goal of enhance courses by aligning them with research-based 
instructional strategies, benefiting LAs, faculty, and students alike 
(Learning Assistant Alliance, 2024). LA programs are particularly 
prevalent in STEM subjects such as biology, chemistry, physics, and 
mathematics. Numerous studies have shown that LAs are associated 
with lowering DFW rates and raising SYG rates for marginalized 
students (e.g., Tedeschi et al., 2023; Van Dusen & Nissen, 2019, 2020). 

At the university that is the source of data for this work (referred 
to in this work anonymously as “UNI”), the LA program hires about 50 
undergraduate LAs each semester. At UNI, the LA-supported courses 
are mostly in mathematics, chemistry, biology, and physics, with the 
highest use typically in introductory physics and math courses. The first 
semester that a student works as an LA, they enroll in a 2-credit course 
on pedagogy that meets once per week. Each LA also meets for an hour 
per week with their faculty mentor, who is the primary instructor of 
the course that the LA is supporting. This provides opportunities to 
review topics and activities for the upcoming week, discuss areas to 
implement curricular and pedagogical innovations, and devise 
strategies to clarify concepts that the faculty mentor and/or the LA 
perceive that students find challenging. LAs also typically hold 
interactive study sessions outside of class and assist faculty in generating 
new curricular materials. However, the LA model is intentionally 
flexible and designed to meet the diverse needs of instructors across a 
range of disciplines. 

Previous work has used regression models to assess the impact that 
LA support has on students in STEM courses. One common approach 
is the logistic regression model (or relatedly, a logit regression model), 
which offers an advantage over ordinary least squares (OLS) regression 
when analyzing student success metrics (DFW and SYG rates). It is 
more robust than OLS in handling complex data effectively, without 

 
Figure 1. The journey of a STEM student as they transition through college (the dark gray boxes denote courses taken with an LA, allowing us to 
evaluate the immediate impact of LA exposure using a short-term metric, the DFW rate & over a six-year period, we can assess the effects of LA 
exposure using a long-term metric, the SYG rate) (Source: Authors) 
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heavy reliance on assumptions. A study by Alzen et al. (2018) found that 
by using a logistic regression model, exposure to LA support was 
associated with a 63% reduction in DFW odds for male students and a 
55% reduction in DFW odds for female students in gateway STEM 
courses. Another method for modeling student success in STEM 
courses is through hierarchical linear models (HLMs) (Van Dusen & 
Nissen, 2020). HLMs are generalizations of OLS regression and is 
specifically designed to handle data where observations are clustered 
within higher-level units (Woltman et al., 2012). These levels could be 
students within various courses across different college departments. In 
the case of the student data, using the HLM provides a way to observe 
the effects of LAs on students within different courses. The HLM 
approach in this study has been adapted from those used by Van Dusen 
and Nissen (2020), where they found a strong association between LAs 
and lower DFW rates in physics courses. These results were especially 
noticeable for women of color. 

One aspect not addressed in any of the existing literature is the 
assessment on student success for those who have had LA support 
multiple courses. We are particularly interested in the impact that 
repeated LA exposure might reveal in STEM courses. Here, we use 
logistic regression and hierarchical linear regression models to examine 
these unexplored effects of the LA program by analyzing various 
combinations of LA exposure within introductory STEM courses as 
well as how general LA exposure in undergraduate coursework 
improves student success. By analyzing university (“UNI”) student 
course data, we aim to address the following questions: 

1. What impact does the LA program have on students’ DFW and 
SYG rates in introductory STEM courses at UNI 

2. How does this impact vary for students belonging to 
marginalized demographics? 

3. How does this impact vary for students with multiple courses 
that are supported by LAs? 

METHODS 

Data Description  

Our main data set includes 3,574,768 rows where each row 
corresponds to a course taken by a student at “UNI”, distinguished by a 
unique anonymized student ID number. UNI is a large, private 
university in the Northeastern US. The course data ranges from 2002 
to 2023. Since students are taking many courses throughout their time 
at UNI, many of the rows correspond to the same student. The main 
data set includes 33 column features such as cohort term, degree term, 

course title, grade, first generation, gender, and AALANA. An additional 
binary data column was added to account for whether each course taken 
by the students had LA support. This was done by matching our main 
longitudinal student grades data set to a LA data set based on whether 
the course had a match in the course term, subject, class section, and catalog 

number data features in both data sets. We added binary columns to 
account for student demographics (non-male, FG, and AALANA) as 
well as for DFW and SYG outcomes. The original data set has a gender 
feature with elements labeled as M, F, or U (male, female, or undefined). 
We want majority groups to be our reference group (0s) for the binary 
features, so we aggregate F and the U group together as “non-male”. We 
also recognize that male and female are sex not gender, which is an 
unfortunate limitation of our data. It is important to point out that 

when students sign up for courses, they have no knowledge of whether 
the course will include LA support or not. This mitigates potential 
biases from self-selection. We filtered the data to only include the years 
2013–2022 to account for UNI transitioning to a semester system from 
a quarter system in Fall 2013. All class sections not taken at the US 
campus of UNI were also eliminated. Summer courses, lab sections, and 
recitation sections were also filtered from the data set. 

We then created two separate data sets, one for DFW analysis and 
the second for SYG analysis. For the DFW data set, the data were 
further filtered to eliminate courses offered after Spring 2020 to account 
for the COVID-19 pandemic. This was done because during the 
pandemic students had alternative grading options after completing a 
course, which may bias resulting grades thus affecting the DFW rates. 
For the SYG data, all students’ starting cohort terms were restricted to 
Fall 2013 to Fall 2016 (inclusive), ensuring we are only incorporating 
students who have had six full years in the data set. The data were 
further filtered to only analyze physics 1 and physics 2 (PHYS1 and 
PHYS2). This was done because PHYS1 and PHYS2 are closely related, 
so it is reasonable to hypothesize that having an LA in PHYS1 may 
impact success rates in PHYS2 or having an LA in both PHYS1 and 
PHYS2 may have an even greater impact.  

We were further motivated to analyze this course sequence since 
they have the highest concentration of LAs among STEM courses at 
UNI (Tedeschi et al., 2023). A summary of the student demographics 
for both the DFW and the SYG data can be found in Table 1. We 
anticipate that PHYS1 and PHYS2 may show similar results for student 
success. To better assess this, multivariable calculus was incorporated 
into the HLM analysis to evaluate distinct courses. Multivariable 
calculus has the third-highest LA count at UNI, following PHYS1 and 
PHYS2. The benefit of using the HLM method is its ability to assess the 
impact of various data features across multiple levels. This approach 
provides us with a means of evaluating the impact of the LA program 
across a broader range of courses. In doing this, two additional data sets 
were created with the same filtering approaches for DFW and SYG, as 
the data in Table 1. A summary of the demographic statistics for these 
additional data sets, including multivariable calculus, are presented. 
Table 2 shows LA and student counts. We have calculated the previous 
LA count a student had prior to taking PHYS1 or PHYS2. This is done 
to analyze the effects previous LA exposure has on a student’s DFW 
odds. This is the same data seen in Table 1. 

We examine the influence that multiple instances of LA support 
have on student success by incorporating additional data features. We 
first added an LA count feature to analyze the impact that previous 
general LA exposure has on a student’s academic success. For each 
student, at any given point during their time at UNI, the value of the LA 

count feature is equal to the number of LA-supported courses that the 
student has taken prior to the current semester. A student who is 
currently enrolled in their first LA-supported course would have an LA 

count value of 0, for example. We also added four binary feature groups 
to account for various combinations of LA support within the physics 
sequence:  

(1) students who have taken PHYS1 with an LA but PHYS2 
without an LA,  

(2) students who have taken PHYS2 with an LA but PHYS1 
without an LA,  

(3) students who have taken PHYS1 and PHYS2 with an LA, and  
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(4) students who have taken both PHYS1 and PHYS2 without an 
LA.  

We are comparing groups 1–3 to assess what combinations of LA 
exposure produce the highest success for students in the physics 
sequence. Identifying these combinations of LA exposure in physics 
courses was done in order to prep our data to assess the effects of 
repeated LA exposure in college STEM courses. Summaries of LA 
exposure among these four student groups can be found in Table 3. We 
see that in our data set, LAs only in PHYS1 has the highest student 
population among LA integrated courses with only LAs in PHYS2 
having the second highest, and LAs in PHYS1 and PHYS2 having the 
lowest. We present the DFW data set, which is broken down by student 
demographics, as depicted in Table 1, covering 8,943 students. We 
display the SYG data set, also broken down by student demographic in 
Table 1, encompassing 4,981 students. In both tables, the rows indicate 
whether the group of students had LA exposure in PHYS1. Similarly, 
the columns denote whether a student had LA exposure in PHYS2. 
 
 

Logistic Regression  

Logistic regression (or slightly reformulated, logit regression) can 
be used to analyze both binary outcome variables and outcome variables 
with multiple categories, making it versatile for a wide range of 
applications (Cokluk, 2010). Through logistic regression, we can 
simultaneously examine multiple independent features in relation to 
the response variable. In the context of our investigation into student 
success within STEM courses at UNI, logistic regression offers a useful 
framework for assessing how various factors such as student 
demographics or LA support in a course, impact the DFW or SYG rate 
odds. In this study y is the response that we are modeling, and p 
represents the probability of a given student earning a grade of a D or 
F or withdrawing from the course (the DFW rate) or alternatively, the 
probability of a given student graduating within six years of 
matriculation. In Eq. (1), 𝛽𝛽0  signifies the intercept, while 
𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛  denote the coefficients corresponding to the independent 
features. Within this model, these coefficients align with distinct data 
features represented by vector �⃗�𝑥 = < 𝑥𝑥𝐿𝐿𝐿𝐿, 𝑥𝑥𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ,𝑥𝑥𝐹𝐹𝐹𝐹 , 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿 >. 
Through some algebraic manipulation (Eq. [2]), the coefficients in the 
logistic regression model can be interpreted as quantifying the influence 
that each independent data feature has on DFW and SYG rate odds. 
 

 𝑦𝑦 = 𝑝𝑝(�⃗�𝑥) =
1

1 + 𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥𝐿𝐿𝐿𝐿+𝛽𝛽2𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝛽𝛽3𝑥𝑥𝐹𝐹𝐹𝐹+𝛽𝛽4𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿) (1) 
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1 − 𝑝𝑝
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Since 𝑝𝑝 can be interpreted as the DFW or the SYG rate, 𝑝𝑝/(1 − 𝑝𝑝) 
represents the odds of a student receiving a D, F, or W grade, or 
graduating within six years of matriculation. The features 
𝑥𝑥𝐿𝐿𝐿𝐿,𝑥𝑥𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , 𝑥𝑥𝐹𝐹𝐹𝐹 , 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿, are binary (0 or 1), so each of the factors 

Table 1. Data demographic summaries for students who have taken either PHYS1 or PHYS2 (the DFW data ranges from Fall 2013–Spring 2019 
and the SYG data ranges from Fall 2013–Spring 2023) 
Gender Race FG status Instruction type Sample size (DFW) Sample size (SYG) 

Male 

AALANA 
CG 

LA 158 64 
Traditional 293 128 

FG 
LA 48 32 

Traditional 106 76 

Non-AALANA 
CG 

LA 1,836 905 
Traditional 3,534 1,980 

FG 
LA 377 216 

Traditional 656 463 

Non-male 

AALANA 
CG 

LA 60 29 
Traditional 120 60 

FG 
LA 16 9 

Traditional 18 15 

Non-AALANA 
CG 

LA 502 264 
Traditional 957 566 

FG 
LA 104 61 

Traditional 158 113 
Total 8,943 4,981 

 

Table 2. LA and student counts-1 
LA count Student count 

0 7,811 
1 829 
2 219 
3 63 
4 8 
5 5 
6 5 
7 1 

 

Table 3. DFW and SYG 
 (PHYS2) LA (PHYS2) No LA 

DFW   
(PHYS1) LA 798 2,314 
(PHYS1) No LA 1,467 4,364 

SYG   
(PHYS1) LA 370 1,273 
(PHYS1) No LA 882 2,456 
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𝑒𝑒𝛽𝛽1 , 𝑒𝑒𝛽𝛽2 , 𝑒𝑒𝛽𝛽3 , 𝑒𝑒𝛽𝛽4  represents the multiplicative influence on the odds 
ratio for DFW or SYG rates. If these factors are less than one, then 
presence of the associated features (e.g., 𝑥𝑥𝐹𝐹𝐹𝐹 , representing an FG 
college student) will diminish the odds of a DFW or SYG. On the other 
hand, if these factors are greater than one, the presence of such 
associated features will increase the odds of a DFW or SYG. In this way, 
these exponentiated coefficients provide insights into the factors 
affecting student success in college STEM education. 

We estimate the coefficients 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛 in the logistic regression 
model using maximum likelihood estimation (MLE), employing the 
Newton-Raphson algorithm. MLE operates by identifying the 
coefficient values that maximize the likelihood function, quantifying 
how effectively the model describes the observed data. We fit the 
logistic regression model using the statsmodels Python package 
(Perktold et al., 2024). 

To quantify the uncertainty of how each feature affects the 
probability of the DFW or SYG rate, the standard error (SE) for each 
coefficient was calculated using the square root of the variance 𝑆𝑆𝑆𝑆𝑖𝑖 =
 ± �𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽𝑖𝑖). We calculated the error bounds by exponentiating the 
SEs and then using these to compute upper and lower bounds for each 
coefficient. It’s important to note that since odds are calculated by 
multiplying 𝑒𝑒𝛽𝛽𝑖𝑖  values, they cannot be negative. While the logistic 
regression model provides us with valuable insight into the impact of 
LA participation on student success, it does not capture the grouped 
multi-level structure inherent to student data. To examine student in 
separate STEM courses more comprehensively, a more suitable 
modeling approach may be an HLM particularly adept for the 
inherently hierarchical structure of student grade data (Van Dusen & 
Nissen, 2020). 

Hierarchical Linear Modeling  

Students’ grades are inherently hierarchical, as they involve 
students nested within courses, and courses nested within departments. 
Consequently, the HLM approach is an effective method for examining 
the impact of the LA program on student success across various 
demographics and courses. To enhance the depth of our model, we 
incorporated multivariable calculus into the data set alongside PHYS1 
and PHYS2 (as shown in Table 4). By including multivariable calculus 

in the HLM, we can assess the variation in the LA program’s impact 
beyond physics courses. Before expanding on the HLM, we will first 
define the classical OLS regression equation: 

 𝑦𝑦 = 𝑝𝑝(�⃗�𝑥) =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜖𝜖 (3) 
 

In the OLS equation, y is the response variable, 𝑝𝑝 is a probability, 
𝛽𝛽0 is the intercept, 𝛽𝛽1 …𝛽𝛽𝑛𝑛  are the coefficients, 𝑥𝑥1 … 𝑥𝑥𝑛𝑛  are the data 
features, and ϵ is the random noise associated with the estimates. The 
HLM approach builds upon this concept, expanding OLS to account for 
different groups. We can visualize the HLM as a matrix, where each 
row represents an individual OLS equation: 
 

 𝑦𝑦𝑖𝑖 =  𝑝𝑝𝑖𝑖(𝑋𝑋) =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖  (4) 
 

In the HLM framework, the 𝑖𝑖 subscript denotes the matrix row (or 
the individual OLS equation) and the 𝑗𝑗  subscript denotes the matrix 
column. In Eq. (4), 𝑦𝑦  is the 𝑖𝑖𝑡𝑡ℎ response that we are modeling 
corresponding to the probability 𝑝𝑝𝑖𝑖 . The intercept is captured in 𝛼𝛼𝑖𝑖  
associated with the specific course under observation, and 𝑋𝑋  is an 
𝑙𝑙 × 𝑚𝑚  matrix. The coefficients 𝛽𝛽𝑖𝑖𝑖𝑖  represents the effects of LA 
exposure and the student demographics corresponding to the different 
STEM courses while 𝜖𝜖𝑖𝑖  is the random noise associated with the 
estimates. Similar to the logistic regression model, we constructed the 
HLM using the Python package statsmodels and the coefficients were 
calculated using the same MLE method. A summary of the student 
demographics is provided in Table 4 following the incorporation of 
multivariable calculus into the analysis. These findings are discussed 
further in the results section. Table 5 shows LA and student counts.  

Table 4. Data demographic summary for students who have taken either PHYS1 and PHYS2, or multivariable calculus (the DFW data ranges from 
Fall 2013–Spring 2019 and the SYG data ranges from Fall 2013–Spring 2023) 
Gender Race FG status Instruction type Sample size (DFW) Sample size (SYG) 

Male 

AALANA 
CG 

LA 257 123 
Traditional 358 137 

FG 
LA 103 74 

Traditional 121 79 

Non-AALANA 
CG 

LA 2,464 1,242 
Traditional 3,915 1,994 

FG 
LA 569 355 

Traditional 715 465 

Non-male 

AALANA 
CG 

LA 93 49 
Traditional 134 63 

FG 
LA 26 18 

Traditional 24 16 

Non-AALANA 
CG 

LA 586 316 
Traditional 1,001 564 

FG 
LA 143 84 

Traditional 166 112 
Total 8,943 4,981 

 

Table 5. LA and student counts-2 
LA count Student count 

0 9025 
1 1166 
2 340 
3 109 
4 22 
5 8 
6 4 
7 1 
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Similar to Table 2, we have calculated the previous LA count a 
student had prior to taking PHYS1, PHYS2, or multivariable calculus. 
This is done to analyze the effects previous LA exposure has on student 
DFW rates. This is the same data seen in Table 4. 

RESULTS 

Prior to fitting the logistic regression or HLMs, we conducted 
preliminary calculations as a reference to verify the models’ results. 
These calculations were made to analyze students enrolled in courses 
with LA integration who received grades of DWF from the course and 
compared this against the overall student population in PHYS1 and 
PHYS2, regardless of their grade. We conducted a similar analysis for 
students without LA integration in their courses. We repeated this 
process for SYG rates as well. The results of these calculations are 
presented in Table 6. Based on these preliminary calculations, we found 
a 7% reduction in DFW rates for the two introductory physics courses 
with LA integration compared to those without. Conversely, we found 
there was only a marginal 1% increase in SYG rates for students with 
LA incorporation in their courses compared to those without. 

We also made similar comparisons for AALANA student seen in 
Table 7. Based on these results (Table 7), there is a 10% reduction in 
DFW rates for AALANA students with LA support in PHYS1 and 

PHYS2 whereas non-AALANA students have a 6% reduction in DFW 
rates (Table 7). There is a 1% reduction in SYG rates for AALANA 
students with LA integration and non-AALANA students saw no 
change in LA integration.  

The results in Table 6 and Table 7 show LA support is associated 
with substantial benefits in terms of decreased DFW rates, but no 
significant change in graduation rates when studying PHYS1 and 
PHYS2 specifically. These calculations indicate that LA integration has 
a more modest impact on students’ graduation rates in PHYS1 and 
PHYS2, than on DFW rates. 

Logistic Regression  

In our first assessment of the student data using the logistic 
regression model, we incorporated all the data features, LA, non-male, 
and AALANA students, as well as the LA count feature to the DFW 
analysis. The results are illustrated in Figure 2, where we examine the 
exponentiated coefficients in relation to the DFW and SYG rates. The 
influence of current LA support on the odds of a student earning a D, 
F, or withdrawal from a course are approximately 0.3 (part a in Figure 

2), indicating a notable impact on reducing the DFW rate. We also find 
that previous general LA support is less impactful on lowering student 
DFW odds as seen by the LA count exponentiated coefficients which is 
approximately 0.95. Additionally, the non-male and FG data features 
are associated with a statistically significant reduction in the DFW rate. 
However, for AALANA student demographic data feature, the 
exponentiated coefficient error bounds overlap 1 in part a in Figure 2, 
and so we can’t conclude that there is a significant relationship between 
AALANA status and changes in DFW rate. In part b in Figure 2, we 
analyze the odds of students’ SYG rates. Here, odds greater than one 
show a positive effect on the SYG rate, while values between 0 and 1 
suggest a reduction in the odds of students graduating within six years. 
In part b in Figure 2, the AALANA student data feature is relatively 
close to zero, indicating a small impact on SYG or DFW rates. 

Given that LAs have, in general, been found to be beneficial to 
students across demographic groups, yet we did not observe substantial 
effects on DFW odds for AALANA students in PHYS1 and PHYS2 (part 
a in Figure 2), we subdivided the PHYS1 and PHYS2 students into four 
groups based on LA exposure and AALANA status:  

(1) AALANA students with LA support,  

Table 6. DFW and SYG rates comparison for students who have taken 
either PHYS1, PHYS2, or both with and without LA support 
Group (PHYS 1 and PHYS2) DFW rate SYG rate 

Students with LA 0.19 0.85 
Students without LA 0.26 0.84 

 

Table 7. Comparison of DFW and SYG rates across four groups: (1) 
AALANA students with LA support, (2) AALANA students without 
LA support, (3) non-AALANA students with LA support, and (4) non-
AALANA students without LA support 
Group (PHYS 1 and PHYS2) DFW rate SYG rate 

AALANA with LA 0.29 0.81 
AALANA without LA 0.39 0.82 
Non-AALANA with LA 0.18 0.85 
Non-AALANA without LA 0.24 0.85 

 

 
Figure 2. Logistic regression results with LA, non-male, FG status, and AALANA students as the independent features (the LA count feature was 
also incorporated into the DFW analysis: [a] displays the feature odds of students’ DFW rates and [b] displays the feature odds of students’ SYG 
rates) (Source: Authors) 
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(2) AALANA students without LA support,  

(3) non-AALANA students with LA support, and  

(4) non-AALANA students without LA support.  

For the logistic regression analysis on DFW odds, we incorporated 
two additional AALANA status groups: AALANA students with LA 
counts and non-AALANA students with LA counts. Eq. (5) displays the 
DFW logistic regression analysis on the AALANA groups. We are 
interested in interactions between AALANA status and LAs, to 
characterize how the effects of LA support may be felt differently for 
AALANA and non-AALANA students. We are also interested in how 
the effects of general previous LA support differs from that of LA 
support in a current course for AALANA students. We broke the 
students up so that each one belongs to exactly one of these subgroups 
based on their AALANA status and whether they had LAs in PHYS1 
and/or PHYS2 (Table 7). Additionally, we considered whether a 
student had LA support in any previous course based on the LA count. 
We represent membership in these groups as binary features in the 
logistic regression analysis, taking non-AALANA students with no LA 
support as the reference group. 
 

 𝑙𝑙𝑙𝑙 �
𝑝𝑝𝐷𝐷𝐷𝐷𝐹𝐹

1 − 𝑝𝑝𝐷𝐷𝐹𝐹𝐷𝐷
� =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿 & 𝐿𝐿𝐿𝐿 + 𝛽𝛽2𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿 & 𝑛𝑛𝑁𝑁−𝐿𝐿𝐿𝐿

+ 𝛽𝛽3𝑥𝑥𝑛𝑛𝑁𝑁𝑛𝑛−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿
+ 𝛽𝛽4𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿 & 𝐿𝐿𝐿𝐿−𝐶𝐶𝑁𝑁𝐶𝐶𝑛𝑛𝑡𝑡
+ 𝛽𝛽5𝑥𝑥𝑛𝑛𝑁𝑁𝑛𝑛−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝐿𝐿 & 𝐿𝐿𝐿𝐿−𝐶𝐶𝑁𝑁𝐶𝐶𝑛𝑛𝑡𝑡  

 

 
 

(5) 
 

We find that non-AALANA students who had LA exposure in 
PHYS1 and PHYS2 exhibit the most impact on lower odds of earning a 
DWF from a course (part a in Figure 3). However, we still find a 
notable impact on reducing the odds of the DFW rate for AALANA 
students who had LA exposure in PHYS1 and PHYS2 compared to 
those who did not. Additionally, the resulting feature coefficients for 
the LA count groups indicate that AALANA students benefit more than 
non-AALANA students from having previous LA exposure, based on 
the lower DFW odds (part a in Figure 3). Even after accounting for 
AALANA student demographics, we do not find a significant impact of 
LA exposure on AALANA students SYG odds, irrespective of LA 
integration (as depicted in part b in Figure 3 from the overlapping error 

bars). The logistic regression results for both DFW and SYG rates based 
on AALANA integration agree with the results depicted in Table 7. 

Using the logistic regression model, we now assess the level of LA 
exposure based on the groupings displayed in Table 3, which are 
categorized by LA exposure for students with an LA in only PHYS1, 
only PHYS2, or both PHYS1 and PHYS2. We found that LA exposure 
in only PHYS1 produces DFW odds of 0.26, LA exposure in only 
PHYS2 results in DFW odds of 0.34 and having LA support in both 
PHYS1 and PHYS2 results in DFW odds of 0.28. In all three cases, 
having LA support in one of these combinations lowers the DFW odds 
relative to students without LA support in either course (part a in 
Figure 4). We also find that students having an LA in PHYS1 or having 
an LA in both PHYS1 and PHYS2 lowers the DFW odds more than just 
having an LA in PHYS2. In part b in Figure 4, the error bounds for the 
influences of LAs in PHYS2 only and LAs in both PHYS1 and PHYS2 
(right two columns of part b in Figure 4) are overlapping. This 
indicates that we cannot conclude that there is a meaningful difference 
between the two groups. But the error bounds for the feature of having 
LA integration in both PHYS1 and PHYS2 (part b in Figure 4, right 
column) do not overlap with the error bounds for the feature of having 
an LA PHYS1 only (part b in Figure 4, left column). While these are 
not strictly confidence intervals, the relative magnitudes and 
uncertainties suggest that there is a benefit to having an LA in PHYS1 
and PHYS2 versus just in PHYS1 in relation to students’ SYG rates. 

Hierarchical Linear Modeling  

To deepen our analysis using the HLM, we included multivariable 
calculus. This additional class was incorporated to examine how student 
success varies across STEM courses. In the HLM analysis, we present 
the coefficient values, denoted as 𝛽𝛽𝑖𝑖 , as either positive or negative, 
where positive coefficients raise the HLM output and negative 
coefficients decrease the HLM output. Here, the outputs are the metrics 
of success, which are either the DFW rate or SYG rate. Figure 5 
illustrates the effects of various data features on the DFW rate. We find 
that LA exposure in multivariable calculus appears to have a stronger 
effect on lowering the DFW rate with a coefficient value of 
approximately –0.12 compared to LA exposure in either PHYS1 or 
PHYS2 which are approximately –0.35 and –0.5. Furthermore, being 

 
Figure 3. Logistic regression results where the features are AALANA students with an LA in at least PHYS1 or PHYS2, AALANA students without 
an LA in both PHYS1 and PHYS2, non-AALANA students with an LA in at least PHYS1 or PHYS2, and non-AALANA students without an LA 
in both PHYS1 and PHYS2: (a) displays the feature odds of students’ DFW rates with additional LA count groups and (b) displays the feature odds 
of students’ SYG rates (Source: Authors) 
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either an FG student or a non-male student reduces the DFW rates in 
multivariable calculus. However, for PHYS1 and PHYS2, the FG 
coefficient error bounds overlap with zero (Figure 5), and the non-
male coefficient error bounds are near zero, indicating that these 
students are not significantly affected based on their marginalized 
demographics.  

Additionally, for PHYS1 and PHYS2, AALANA students have a 
higher probability of receiving a DWF from a course, as indicated by 
slightly positive coefficients. These effects on AALANA students align 
with the results from Van Dusen and Nissen (2020). However, as 
observed from the preliminary calculations in Table 7, AALANA 
students with LA support showed a 10% decrease in their DFW rates. 
Therefore, this suggests that whatever disadvantage AALANA students 
face in these courses, LA support is a viable avenue to reduce those 
numbers. 

Using the same three STEM courses and data features, we applied 
the HLM with the SYG rate as the response variable (Figure 6). We 
find that for the SYG rate across all three STEM courses, the LA 
coefficients are all greater than zero, indicating a positive effect on 
students graduating within six years. These findings corroborate with 
the preliminary calculations shown in Table 3, where we observed only 
a 1% difference in graduation rates among students in PHYS1 and 
PHYS2 with or without LA exposure. Similarly, we observe a consistent 

trend for non-male students, as seen in the logistic regression results, 
showing a higher probability of graduating within six years in PHYS1 
and PHYS2. However, for multivariable calculus, the error bounds for 
the non-male coefficient include 0 so it isn’t statistically significant. This 
may be attributed to relatively smaller sample sizes for non-male 
students in multivariable calculus. 

DISCUSSION 

Research Question 1 

What impact does the LA program have on students’ DFW and SYG rates 

in introductory STEM courses at UNI? We found, using the logistic 
regression model, that LA support in PHYS1 or PHYS2 is associated 
with a decrease in DFW odds, which is consistent with previous studies 
(Alzen et al., 2018). The HLM results showed that having an LA in 
either PHYS1 or PHYS2 yields similar impacts on DFW rates, with the 
HLM displaying that the LA coefficients for PHYS1 and PHYS2 differ 
by only 2% (Figure 5). Additionally, the HLM revealed that the impact 
of LA support in multivariable calculus was much stronger than in 
either of the physics courses. Furthermore, the logistic regression 
model indicated that LA support in PHYS1 or PHYS2 is associated with 
an increase in graduation rates. Using the HLM model, we observed the 

 
Figure 4. Logistic regression results where the features are students with an LA in PHYS1 only, PHYS2 only, or an LA in both PHYS1 and PHYS2: 
(a) displays the feature odds of students’ DFW rates and (b) displays the feature odds of students’ SYG rates (Source: Authors) 

 
Figure 5. HLM results with the DFW rate as the response variable and 
LA, FG, non-male, and AALANA students as the independent data 
features (the coefficients are grouped by the courses multivariable 
calculus, PHYS1 and PHYS2) (Source: Authors) 

 
Figure 6. HLM results with the SYG rate as the response variable and 
LA, FG, non-male, and AALANA students as the independent data 
features (the coefficients are grouped by the courses multivariable 
calculus, PHYS1 and PHYS2) (Source: Authors) 
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positive impact that LAs have in each course individually. Our findings 
that LA support in these introductory science courses is associated with 
improvements in graduation rates are consistent with previous work 
(Tedeschi et al., 2023). However, the effect of LA support on SYG rates 
is relatively lower than the improvement of +9% found by those 
authors. One explanation for the less pronounced SYG impact may be 
that PHYS1 and PHYS2 already have some form of course support (e.g., 
teaching assistants, recitations), which might diminish the expected 
effect. It may also be the case that the effects of the LA program on SYG 
rates were less pronounced for PHYS1 and PHYS2 due to the 
graduation rates already averaging around 85%, much higher than the 
UNI average. Further, the fact that these introductory Physics courses 
generally are taken early during a student’s time at UNI means that 
many other events will also occur after students take PHYS1 or PHYS2, 
before graduating (or not). Thus, many other events can confound any 
causal relationship between LA support in PHYS1 and PHYS2 and 
students’ likelihood of graduating. 

Research Question 2 

How does the impact of LA support vary for students belonging to 

marginalized demographics? In our analysis of the logistic regression 
results, we found that after controlling LA exposure among AALANA 
students, their DFW odds were reduced by 20%. When comparing 
previous general LA support among AALANA students to AALANA 
students who didn’t have previous LA support, the effects on DFW 
odds were nearly the same. When using logistic regression to analyze 
LA support’s impact on SYG rates among AALANA students, we saw 
no difference in SYG rates between AALANA students in LA-
supported versus non-LA-supported introductory physics courses. 
This, too, may be attributable to the typical long time periods between 
when students would take an introductory physics course (i.e., early in 
their college career) and graduating. 

Research Question 3 

How does the impact of LA support vary for students with multiple courses 

that are supported by LAs? Our logistic regression model results indicate 
that repeated LA exposure in physics courses significantly benefits 
DFW rates beyond just having an LA in PHYS2. An LA in PHYS2 alone 
shows improvements compared to no LA support, but having an LA in 
both PHYS1 and PHYS2, or even just in PHYS1, reduces DFW odds 
more than having an LA solely in PHYS2. This finding was unexpected. 
One possible explanation is that students who had LA support earlier, 
in PHYS1, developed better problem-solving skills, which had a 
positive impact on their performance in subsequent courses. This is an 
area we plan to investigate further. Additionally, our analysis suggests 
a significant benefit in SYG rates when students receive LA support in 
both PHYS1 and PHYS2 compared to just PHYS1. It is essential to lower 
DFW rates while simultaneously increasing SYG rates. As illustrated in 
Figure 4, incorporating LA support into both PHYS1 and PHYS2 
appears to yield the best outcomes for both success metrics. Therefore, 
we conclude that providing LA support in both PHYS1 and PHYS2 
could be an effective strategy for enhancing STEM student success in 
introductory physics courses at UNI. These results offer practical 
guidance on the potential positive impacts of LA support, including 
repeated support in multiple courses, more broadly as well. 

CONCLUSION 

This study underscores the impactful role of the LA program in 
enhancing student success, particularly through significant reductions 
in DFW rates observed across multiple introductory STEM courses. 
Logistic regression and HLM analyses consistently revealed the positive 
impact of LA integration, with notable improvements in both 
introductory physics and multivariable calculus courses. The impact of 
LA support for AALANA students in the observed introductory STEM 
courses resulted in a substantial reduction in DFW odds (20%), 
highlighting the program’s effectiveness in supporting marginalized 
demographics. Repeated LA exposure yielded cumulative benefits, 
suggesting that early and sustained LA support fosters essential 
problem-solving skills that contribute to long-term success. However, 
the impact on SYG rates, while positive, was less pronounced. This is 
likely due to preexisting support structures, already relatively high 
baseline graduation rates, and the simple fact that there is a lot of time 
between student enrollment in these introductory STEM courses 
(students’ first or second year at UNI) and on-time graduation (four or 
five years in most UNI programs). 

Future work should focus on the longitudinal impacts of LA 
exposure, specifically its role in sustaining student success across 
advanced STEM courses. Investigating the complex factors influencing 
SYG rates, particularly for AALANA students, will be essential to 
addressing existing disparities and improving equity. Additionally, 
further studies should evaluate how varying combinations and 
durations of LA support optimize outcomes, offering insights to refine 
program implementation. These findings advocate for enhancing the 
LA program by emphasizing early intervention and repeated 
engagement, thereby driving academic achievement and inclusivity 
across diverse student populations. 
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