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ABSTRACT 
This study investigates the relationship between basic mathematical skills and the understanding of vector concepts 
among 54 prospective science teachers enrolled in basic physics and basic math courses. The research employed a 
descriptive and correlational quantitative approach, utilizing data from vector tests and basic mathematics 
assessments administered during the courses. Descriptive statistical analyses revealed that participants showed 
varying levels of proficiency in both vector understanding and basic mathematical abilities, with average scores 
indicating a moderate level of competence overall. Correlational analysis using Pearson correlation coefficients 
found a significant positive relationship ( 𝑟𝑟 = 0.477, 𝜌𝜌 = 0.001 ) between basic mathematical skills and the 
understanding of vector concepts, suggesting that higher proficiency in basic mathematical skills corresponds to 
better understanding of vector concepts. Further analysis segmented by dimensions of vector operations indicated 
stronger correlations in two-dimensional vector understanding (𝑟𝑟 = 0.503, 𝜌𝜌 = 0.000) compared to one-dimensional 
operations (𝑟𝑟 = 0.348, 𝜌𝜌 = 0.014). Basic geometry emerged as the most influential predictor of understanding of 
vector concepts, exhibiting the highest correlation with both overall understanding of vector concepts (𝑟𝑟 =
0.444, 𝜌𝜌 = 0.001) and 2D understanding of vector concepts (𝑟𝑟 = 0.430, 𝜌𝜌 = 0.0021). These findings underscore the 
critical role of mathematical competence, particularly in geometric reasoning, in facilitating conceptual 
understanding in physics education. In conclusion, strengthening basic mathematics skills among prospective 
science teachers is essential for enhancing their ability to teach and understand physics, particularly in topics like 
vectors. Future research should explore instructional strategies to address gaps in math-physics integration. 
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INTRODUCTION 

One of the most challenging subjects for students is physics, largely 
due to the dominant presence of mathematics (Crowell, 2007; Putri & 
Pranata, 2023). The emphasis on calculations can sometimes 
overshadow the core ideas of physics itself (de Winter & Hardman, 
2020). Students generally recognize the close connection between 
mathematics and physics, both in terms of content and real-life 
applications, and understand that mathematics is essential for 
supporting their comprehension of physics (Kapucu et al., 2016). 
However, other studies suggest that the negative perception students 
have toward physics is not necessarily caused by mathematics, but 
rather by lack of the identification math skills to applied in physics 
(Wilson, 2014) and the missing links between mathematics and physics 
(Michelsen, 2005). Understanding the scope of physics and how 
mathematical tools support the comprehension of these concepts is 
crucial.  

Physics involves a chain of interconnected concepts, beginning 
with fundamental ideas that gradually build toward more complex 

theories. A deep understanding of vectors is particularly fundamental, 
as they form the basis for many key physical quantities that are 
characterized by both magnitude and direction, known as vector 
quantities. Examples of such quantities include displacement, velocity, 
acceleration, force, gravitational force, work, momentum, and torque. 
Mastery of vectors, therefore, becomes critical not only in kinematics 
and dynamics but also in many advanced areas of physics. Previous 
studies have shown that vector understanding is positively correlated 
with students’ comprehension of motion, such as in projectile motion 
(Pranata & Seprianto, 2023). Vectors are often represented using 
arrows to show both magnitude and direction, which is why they are 
referred to as the “language of arrows” (TLA) (Heafner, 2015). Another 
study found that students’ proficiency in vector representation 
correlates highly with the quality of free-body diagrams using arrows 
they produce when studying force in dynamics (Pranata & Lorita, 2023).  

Despite the importance of vectors, various studies indicate that 
students’ understanding of vector concepts, particularly basic vector 
operations, remains low (Pranata, 2023, 2024; Shaffer & McDermott, 
2005). Students struggle with applying vectors in kinematics (Barniol & 
Zavala, 2014a; Shaffer & McDermott, 2005), highlighting the need to 
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explore and analyze their understanding and the challenges they face in 
learning these concepts. Understanding how vector concepts relate to 
mathematics is a critical first step, as previous studies suggest. The 
process can then extend to applying these concepts in more complex 
physics topics. 

Although mathematics is sometimes perceived as a challenge in 
learning physics, it remains an integral part of the discipline. Physics 
education must focus on conceptual understanding while using the 
necessary mathematical tools to achieve learning objectives, such as 
geometry in vector studies. Integrating mathematics into physics can 
help increase students’ interest and self-efficacy (Béchard et al., 2021) if 
it is applied appropriately and not overly emphasized as the primary 
focus (de Winter & Hardman, 2020). The key focus should remain on 
physics concepts, such as vectors. As such, it is predicted that a strong 
relationship exists between vector comprehension and basic 
mathematical abilities. 

The mathematical formula in physics is a key component of the 
subject. Mathematics are fundamental tools for representing physical 
variables and their relationships (National Research Council., 2012). 
This applies to many areas of physics, and the role of mathematics in 
physics often gives students the impression that physics is 
predominantly about equations and calculations (de Winter & 
Hardman, 2020). A positive linear relationship between mathematics 
achievement and physics performance has been established (Chen et al., 
2021). Prior mathematical knowledge is also a significant predictor of 
students’ problem-solving skills in physics (Djudin, 2023). While 
important, the difficulty some students face with mathematical skills 
can create barriers to success in physics, which must be navigated 
carefully. 

Previous studies highlight that students often face difficulties in 
understanding vector concepts from both a mathematical and 
operational perspective (Pranata, 2023, 2024). Students tend to use 
mathematical formulas before grasping the underlying physics 
concepts. This approach can exacerbate their challenges, as they 
struggle to select and apply appropriate mathematical and physical laws 
and formulas (Meli et al., 2016). There is a recognized need to assess 
and improve these foundational skills, especially among prospective 
science teachers. Physics offers an excellent opportunity to help 
students learn how to apply mathematics to real-world contexts (Jensen 
et al., 2017), and vice versa, using mathematics as a tool to facilitate the 
learning of physics. Given the close relationship between the two, it is 
recommended that physics and mathematics be taught in tandem more 
frequently (Michelsen, 2015).  

Students’ understanding of vectors has been shown to significantly 
correlate with their basic mathematical skills, which are necessary for 
manipulating and applying vectors in physics problems. Mathematical 
operations that are easily handled in a mathematics class can become 
challenging when applied in a physics context (Meli et al., 2016). 
Moreover, students often have a simplified view that “maths explains 
physics,” which experts argue can hinder their physics comprehension 
if students cannot identify the relevant mathematical concepts that may 
influence students’ understanding in physics (Wilson, 2014).  

Mastery of basic mathematical abilities is crucial for learning 
physics. Arons (1997) identified three foundational mathematical 
concepts necessary for introductory physics instruction: arithmetic 
reasoning, geometric scaling, and proportionality. Vector concepts in 
physics can be represented both visually (through arrows) and 

mathematically (using formulas) (Barniol & Zavala, 2014b; Hawkins et 
al., 2010; Knight, 1995). So we also need to explore mathematical 
concepts related to arrows that usually place in coordinate and 
equations. Based on these insights, we identified five essential 
mathematical concepts to include: number concepts, proportionality, 
coordinates, geometry, and equations. These concepts are important for 
solving physics problems and applying mathematical models, especially 
in vector analysis. Although research exists on students’ understanding 
of vectors and mathematical skills, limited studies focus on prospective 
science teachers. Understanding how these individuals perceive and 
integrate these concepts is essential to developing targeted educational 
interventions. 

The study of academic mathematics provides increasing 
opportunities to learn physics over the course of study (Neumann et al., 
2021). Having interdisciplinary experiences in both physics and 
mathematics helps students develop a more meaningful understanding 
of these interconnected subjects (Liu & Liu, 2011). Evidence of the 
correlation between students’ initial mathematical knowledge and their 
learning gains in physics is well-documented (Buick, 2007; Chen et al., 
2021; Meltzer, 2002). However, few studies have systematically 
investigated the relationship between students’ understanding of vector 
concepts and their proficiency in basic mathematics. Such a correlation 
is crucial for understanding predictors of success in physics education. 
Educators should recognize this relationship to improve students’ 
performance and attitudes toward both subjects (Michelsen, 2015). 
Understanding this relationship will enable students to engage more 
effectively with both physics and mathematics. 

This research has three main objectives:  

(1) to describe the level of prospective science teachers’ vector 
conceptual understanding (VCU),  

(2) to investigate the relationship between their VCU and their 
basic mathematical abilities, and  

(3) to identify potential predictors of success in VCU through 
students’ mathematical proficiency.  

These findings will contribute valuable insights for educators in 
designing effective instructional strategies for future science teachers. 

METHODS 

A quantitative research method with descriptive and correlational 
design was employed, aligning with the study’s objective to examine 
students’ VCU and mathematical skills individually and their 
interrelationship. The descriptive approach facilitated an in-depth 
analysis of students’ comprehension of vector concepts and 
foundational mathematical abilities, while the correlational design 
enabled an assessment of potential connections between these two skill 
sets. The study adopted a total sampling method, meaning all students 
from the targeted population were included. This approach was chosen 
due to the relatively small and accessible population of 54 prospective 
science teachers enrolled in both basic physics and basic mathematics 
courses within the same academic term. These students provided a 
relevant population, as both courses integrate vector and mathematical 
concepts fundamental to understanding physics. The comprehensive 
inclusion of all available students enhances the validity of the findings 
within this specific educational context. However, generalizing the 
results to broader populations should be done cautiously, as this sample 
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reflects a particular cohort of pre-service science teachers in a single 
academic setting.  

Data on students’ understanding of vector concepts were collected 
using a vector test administered in the basic physics course. This test 
focused on fundamental vector operations, such as vector addition and 
subtraction in both one-dimension (1D) and two-dimension (2D). To 
ensure content validity, the vector test was reviewed by subject matter 
experts in physics education, who assessed whether the items effectively 
covered the essential concepts. To assess basic mathematical abilities, a 
test was administered in the basic math course, covering key topics such 
as basic number concepts, proportionality, coordinates, plane and solid 
figures, and equations. The math test was also developed and refined 
with input from mathematics education specialists to ensure it 
measured relevant competencies accurately. Both instruments 
underwent a validation process involving expert reviews and item 
analysis to confirm their appropriateness for assessing the intended 
skills. 

Prior to data collection, all participants were informed about the 
purpose of the study, the voluntary nature of their participation, and 
their right to withdraw at any time without consequences. Informed 
consent was obtained from each participant, ensuring that they 
understood and agreed to the use of their data for research purposes. 
Confidentiality and anonymity were maintained throughout the study. 

Out of the 54 participants, data from 5 students were excluded due 
to the responses, as a result of their absence from one of the tests. This 
left a sample of 49 students for analysis. Both sets of data were analyzed 
descriptively to provide an overview of the understanding of vector 
concepts and basic mathematical abilities. Students’ scores were 
categorized based on a predefined scale, aligned with institutional 
standards, as shown in Table 1. 

The relationship between the data sets was analyzed using Pearson’s 
or Spearman’s rho correlation tests. Pearson’s correlation was applied 
when the data met the parametric requirements of normal distribution 
(assessed via skewness) and linearity (assessed via scatterplots) (Leech 
et al., 2005; Morgan et al., 2004). If these conditions were not met, 
Spearman’s rho test was employed. The correlation coefficients were 
categorized based on a predefined scale, as shown in Table 2 (Cohen, 
1988). To further explore the relationship between students’ 
understanding of vector concepts and their basic mathematical abilities, 
regression analysis was conducted. This analysis aimed to predict 
students’ understanding of vector concepts based on their basic 
mathematical abilities, thereby identifying potential predictors and 
providing insights into the factors affecting these abilities. 

RESULTS AND DISCUSSION 

Descriptive Statistic 

After collecting data through the vector test and the basic 
mathematics test, the data were analyzed descriptively using SPSS to 
answer first research questions. The results are presented in Table 3. 

Based on the mean values of the two variables in Table 3, it can be 
observed that the score for vector understanding (75.30) is slightly 
higher than that for basic mathematical skills (72.68). Vector 
understanding is further divided into the understanding of vector 
operations in 1D and 2D, while basic mathematical skills are categorized 
into five parts: number concepts (M1), proportionality (M2), 
coordinates (M3), basic geometry (M4), and equations (M5). The mean 
score for each of these categories are presented in Figure 1. The 
complete descriptive statistical analysis is provided in Appendix A. 

In terms of vector understanding, students demonstrated greater 
comprehension of 1D vectors (mean = 78.23) compared to 2D vectors 
(mean = 73.26). However, proficiency in 2D vectors is essential for 
grasping subsequent physics concepts, such as parabolic motion 
(Pranata & Seprianto, 2023), force analysis (Pranata & Lorita, 2023; 
Pranata et al., 2016), torque analysis (Pranata et al., 2017), and other 
concepts involving vector quantities. Similar patterns have been 
observed in previous studies conducted under various learning 
conditions, such as assignment-based learning (Pranata, 2023), blended 
learning (Pranata & Seprianto, 2023), and the use of PhET simulations 
(Pranata, 2023). These results align with the fact that the difficulty of 
vector manipulation increases with dimensional complexity. 

Regarding basic mathematics skills (BMS), the highest score was 
achieved in coordinates (84.75), followed by number concepts (73.53) 
and proportionality (70.95). Basic geometry (68.96) and equations 
(65.22) had lower average scores. This distribution suggests that while 
students are proficient in spatial reasoning (as reflected by the high 
score in coordinates), they may encounter difficulties with more 
abstract mathematical operations, such as geometry and solving 
equations. 

The distribution of students’ scores for vector understanding and 
BMS was also analyzed. For vector understanding, students were evenly 
distributed across different score ranges, with 30.61% achieving the 
highest category (rank A), as shown in Figure 2. In contrast, for BMS, 
the majority of students (46.94%) fell into rank B, with fewer (24.49%) 
in rank A. 

Table 1. Student score categories 
Score (S) Category 

80 ≤ S ≤ 100 A 
65 ≤ S < 80 B 
0 ≤ S < 65 C 

 

Table 2. Interpretation of the strength of a relationship 
Strength of a correlation r 

Much larger than typical ≥ 70 
Large or larger than typical 0.50 
Medium or typical 0.30 
Small or smaller than typical 0.10 

 

Table 3. Descriptive statistic 

Variables N Range Minimum Maximum 

Mean 

Standard deviation 

Skewness 

Statistic Standard error Statistic Standard error 

VCU 49 66.67 33.33 100.00 75.30 2.42 16.94 –0.14 0.34 
BMS 49 40.00 50.00 90.00 72.68 1.55 10.88 –0.14 0.34 
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These descriptive findings offer a broad overview of students on 
both variables (VCU and BMS) and their respective sub-categories. 
However, further investigation is necessary to explore potential 
relationships between these variables and their sub-categories. 
Specifically, regression analysis can assess whether BMS serve as 
predictors for VCU. 

Understanding Vector Concepts and Their Correlation with 

Basic Mathematical Skills 

Vector concepts are deeply intertwined with basic mathematical 
skills. Mathematics serves as a foundational tool for understanding 
vectors, including operations related to coordinates, numbers, 
proportionality, geometric properties, and equations. Descriptive 

statistics show a normal distribution of the data, as indicated by 
skewness values within the acceptable range of –1 to +1 (see Table 1 
and Appendix A). Additionally, based on the scatterplot (Figure 3), a 
linear relationship between the two datasets–VCU and basic 
mathematical skills–is observed, meeting the conditions for Pearson 
correlation testing. 

A Pearson correlation analysis was performed using SPSS. The 
results, summarized in Table 4, indicate a significant medium-level 
correlation ( 𝑟𝑟 = 0.477, 𝜌𝜌 = 0.001 ) between BMS and vector 
understanding, approaching a high correlation threshold (Cohen, 
1988). This suggests that students with higher proficiency in basic 
mathematics tend to have a better understanding of vectors. These 
findings align with previous research on the correlation between 
mathematical ability and physics comprehension (Chen et al., 2021; 
Neumann et al., 2021). Others studies also find the same results but 
focus on math and physics learning gains (Buick, 2007; Meltzer, 2002). 

Further analysis revealed that BMS correlated more strongly with 
2D vector understanding ( 𝑟𝑟 = 0.503 ) than with 1D vector 
understanding ( 𝑟𝑟 = 0.348 ), with both correlations statistically 
significant (𝜌𝜌 = 0.000 for 2D and 𝜌𝜌 = 0.014 for 1D) (Table 5). This 
underscores the importance of solid mathematical skills, particularly 
when dealing with more complex vector operations in 2D. 

Additionally, specific mathematical skills were examined for their 
correlation with vector understanding. Although coordinates scored 
the highest in BMS, their correlation with vector understanding was 
not statistically significant. In contrast, significant correlations were 
found between number concepts and 2D vector understanding, as well 
as between proportionality, equations, and vector comprehension, with 

 
Figure 1. Scores distribution based on category: Vector Understanding (left) and Basic Math Skills (right) (Source: Author’s own elaboration) 

 
Figure 2. Scores distribution for each student: Vector Understanding (left) and Basic Math Skills (right) (Source: Author’s own elaboration) 

 
Figure 3. Scatterplot: BMS in x-axis and VCU in y-axis (Source: 
Author’s own elaboration) 



 Pranata / Contemporary Mathematics and Science Education, 6(1), ep25001 5 / 15 

basic geometry emerging as a key predictor for both 1D and 2D vector 
understanding. 
Regression: How Basic Math Skills Predict Vector 

Understanding? 

A simple regression analyses were conducted to examine how well 
BMS predict VCU across different dimensions and categories of 
mathematical content.  

Overall predictive model 

The overall regression model for predicting VCU based on BMS 
was statistically significant, 𝐹𝐹(1,47) = 13.826, 𝜌𝜌 = 0.001 (𝜌𝜌 <
0.01). The derived equation to understand this relationship was  

𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 21.364 + 0.742 (𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 

This indicates that for every unit increase in BMS score, VCU score 
is expected to increase by 0.742 units. The adjusted R-squared value of 
0.211 suggests that 21.1% of the variance in VCU score is explained by 
BMS, categorized as a medium effect (Cohen, 1988). Detailed regression 
analysis results are provided in Appendix B. 

Dimension-specific analysis 

Simple regression was also conducted separately to investigate how 
well BMS predict VCU in 1D and D. The result were not statistically 
significant for 1D, 𝐹𝐹(1,47) = 6.479, 𝜌𝜌 = 0.014 (𝜌𝜌 > 0.01) . In 
contrast, the result was statistically significant for 2D, 𝐹𝐹(1,47) =
15.948, 𝜌𝜌 = 0.000 (𝜌𝜌 > 0.01). The identified equation to understand 
those relationship was  

𝑉𝑉𝑉𝑉𝑉𝑉 1𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 35.851 + 0.583 (𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 

𝑉𝑉𝑉𝑉𝑉𝑉 2𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 6.861 + 0.901 (𝐵𝐵𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 

The adjusted R-squared value of 0.237 indicates that 23.7% of the 
variance in 2D VCU score is explained by BMS, also categorized as a 
medium effect. Detailed results are provided in Appendix C and 
Appendix D. 

Mathematical category analysis 

A multiple regression analysis was conducted to determine which 
category of BMS best predicts VCU. The overall model was statistically 
significant 𝐹𝐹(5,43) = 3.3.671, 𝜌𝜌 = 0.007 (𝜌𝜌 < 0.01). The equation 
derived is 

𝑉𝑉𝑉𝑉𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶 + 0.256 (𝑀𝑀1) + 0.023 (𝑀𝑀2) + 0.109 (𝑀𝑀3) +
0.517 (𝑀𝑀4) − 0.025 (𝑀𝑀5). 

where 𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 11.531 and M1 to M5 represent categories of 
BMS.  

Basic geometry (M4) emerged as the strongest predictor for VCU, 
with a regression equation indicating that higher scores in basic 
geometry correlate positively with VCU scores. Detailed results are 
provided in Appendix E. Basic geometry also demonstrated the 
highest correlation with both 1D and 2D VCU (𝑟𝑟 = 0.364, 𝑝𝑝 = 0.010, 
and 𝑟𝑟 = 0.430, 𝑝𝑝 = 0.002, respectively) and strongest predictor form 
VCU in 1D and 2D, reinforcing its significance in understanding vector 
concepts (Appendix F and Appendix G). Concepts of numbers (M1) 
and coordinates (M3) also served as good predictors for VCU. Sample 
questions (originally in Indonesian) are provided in Appendix H. 

These findings underscore the importance of basic mathematics, 
particularly basic geometry, in comprehending vector concepts. The 
integration of relevant mathematical content in physics education 
enhances conceptual understanding and supports learning objectives. 
However, overemphasizing computational aspects alone may obscure 
fundamental physics concepts. Therefore, aligning mathematical 
components with physics concepts is crucial for fostering meaningful 
learning experiences and avoiding educational fatigue. 

In context of science education, integrating science and 
mathematics content can enhance students’ interest and efficacy 
(Béchard et al., 2021). However, studies have shown varied responses 
regarding the integration of mathematics in biology (Ulandari et al., 
2024), chemistry and physics, suggesting a need for tailored approaches. 
While mathematics plays a dominant role in physics and chemistry 
(Putri & Pranata, 2023), its relevance should be carefully considered to 
optimize learning outcomes without overwhelming students. When 
students recognize that mathematics can enhance their physics 
performance, they are more motivated to learn how to use 
mathematical knowledge to solve physics problems (Chen et al., 2021). 

From a broader scientific perspective, mathematics is often 
considered the language of the universe. It is used to describe and 
explain natural phenomena through mathematical equations that 
represent patterns and relationships in the physical world. To deepen 
understanding in physics, studying mathematics alongside physics is 

Table 4. Pearson correlation results-1 
Variables VCU VCU 1D  VCU 2D 

BMS 
Pearson correlation 0.477** 0.348* 0.503** 

Sig. (2-tailed) 0.001 0.014 0.000 
* Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed) 

Table 5. Pearson correlation results-2 
Variables  VCU VCU 1D  VCU 2D 

M1. Concepts of numbers 
Pearson correlation 0.296* 0.131 0.392** 

Sig. (2-tailed) 0.039 0.370 0.005 

M2. Proportionality 
Pearson correlation 0.331* 0.274 0.320* 

Sig. (2-tailed) 0.020 0.057 0.025 

M3. Coordinates 
Pearson correlation 0.239 0.220 0.210 

Sig. (2-tailed) 0.098 0.128 0.148 

M4. Basic geometry 
Pearson correlation 0.444** 0.364* 0.430** 

Sig. (2-tailed) 0.001 0.010 0.002 

M5. Equations 
Pearson correlation 0.318* 0.203 0.363* 

Sig. (2-tailed) 0.026 0.162 0.010 
* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed) 
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highly beneficial (Crowell, 2007). The mathematical concepts must 
align with the physics content being taught, such as vectors, which 
require a grasp of basic geometry, number concepts, and equations. 
Addressing areas of mathematical difficulty can improve physics 
comprehension, and previous research confirms that integrating both 
subjects can enhance learning outcomes in teacher education 
(Neumann et al., 2021). 

In science, mathematics and computation are powerful tools for 
representing physical variables and their relationships. They are used in 
simulations, statistical data analysis, and recognizing quantitative 
relationships (National Research Council, 2012). The conceptual 
understanding of quantitative relationships underlying scientific 
phenomena forms the basis for sensemaking in science from a 
mathematical perspective. This type of sensemaking–focusing on the 
deep conceptual understanding of quantitative relationships–can guide 
instruction, curriculum, and assessment development (Kaldaras & 
Wieman, 2023; Kuo et al., 2020; Zhao & Schuchardt, 2021). 

In conclusion, mathematics plays a pivotal role in understanding 
the physical sciences, especially physics, when purposefully integrated 
with learning objectives. This approach ensures that mathematical 
concepts not only support but also enhance students’ engagement and 
understanding in physics education. In alignment with the role of math 
in understanding the physical world, the results show a significant 
correlation between VCU and BMS. Thus, when teaching physics 
concepts like vectors, it is essential to identify and integrate relevant 
mathematical concepts. Instructors may consider adding math-focused 
sessions or workshops to the physics curriculum. 

CONCLUSION 

This study aimed to analyze prospective science teachers’ 
understanding of vector concepts and examine its correlation with their 
basic mathematical abilities. The findings indicate a significant 
relationship between proficiency in basic mathematics, particularly 
geometry and number concepts, and comprehension of vector 
concepts. Prospective science teachers with stronger mathematical 
foundations were better equipped to grasp vector-related topics, crucial 
in physics education. Consequently, reinforcing these skills within 
teacher education programs could enhance the quality of physics 
instruction. 

The study also highlights the need for an integrated approach to 
teaching physics and mathematics. Rather than focusing solely on 
computational methods, aligning mathematical tools with physics 
concepts can foster deeper conceptual understanding and reduce 
educational fatigue. As prospective science teachers play a critical role 
in shaping future generations’ understanding of physics, strengthening 
their mathematical proficiency could have long-term positive impacts 
on science education. Targeted interventions aimed at developing these 
foundational skills are essential for preparing future teachers to convey 
both the mathematical and conceptual aspects of physics effectively. 

It is important to note the study’s limitations, as it was conducted 
in a single location with a relatively small sample, which may limit the 
generalizability of the findings. Further research across diverse settings 
and larger sample sizes is needed to explore the specific challenges 
prospective science teachers face when applying mathematical concepts 
to physics. Also, expanding the scope to investigate a broader range of 
mathematical abilities and their influence on other key physics topics 

could provide valuable insights into optimizing science teacher 
education. 
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APPENDIX A: DESCRIPTIVE STATISTICS 

Table A1. Descriptive statistics 

Variables Range Minimum Maximum 

Mean 

Standard deviation 

Skewness 

Statistic Standard error Statistic Standard error 
VCU 66.67 33.33 100.00 75.297 2.419 16.936 –0.138 0.340 
VCU 1D 66.67 33.33 100.00 78.232 2.604 18.227 –0.529 0.340 
VCU 2D 66.67 33.33 100.00 72.364 2.783 19.482 0.067 0.340 
BMS 40.00 50.00 90.00 72.682 1.554 10.881 –0.140 0.340 
M1. Concepts of numbers 50.00 50.00 100.00 73.526 2.557 17.896 –0.175 0.340 
M2. Proportionality 50.00 50.00 100.00 70.948 2.505 17.531 0.244 0.340 
M3. Coordinates 50.00 50.00 100.00 84.751 2.469 17.283 –0.881 0.340 
M4. Basic geometry 50.00 50.00 100.00 68.963 2.0151 14.106 0.371 0.340 
M5. Equations 50.00 50.00 100.00 65.221 1.999 13.990 0.618 0.340 
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APPENDIX B: REGRESSION I 

Table B1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.477a 0.227 0.211 15.04420 
a Predictors: (Constant), Basic Math Skills 

 

Table B2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 3,129.144 1 3,129.144 13.826 0.001a 
Residual 10,637.418 47 226.328   
Total 13,766.562 48    

a Predictors: (Constant), Basic Math Skills 
b Dependent variable: Vector Understanding 
 

Table B3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) 21.364 14.663  1.457 0.152 
Basic Math Skills 0.742 0.200 0.477 3.718 0.001 

a Dependent variable: Vector Understanding 
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APPENDIX C: REGRESSION II 

Table C1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.348a 0.121 0.102 17.26843 
a Predictors: (Constant), Basic Math Skills 
 

Table C2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 1,932.176 1 1,932.176 6.479 0.014a 
Residual 14,015.345 47 298.199   
Total 15,947.521 48    

a Predictors: (Constant), Basic Math Skills 
b Dependent variable: Vector Understanding 1 Dimension 
 

Table C3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) 35.851 16.831  2.130 0.038 
Basic Math Skills 0.583 0.229 0.348 2.545 0.014 

a Dependent variable: Vector Understanding 1 Dimension 
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APPENDIX D: REGRESSION III 

Table D1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.503a 0.253 0.237 17.01268 
a Predictors: (Constant), Basic Math Skills 

 

Table D2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 4,615.804 1 4,615.804 15.948 0.000a 
Residual 13,603.266 47 289.431   
Total 18,219.070 48    

a Predictors: (Constant), Basic Math Skills 
b Dependent variable: Vector Understanding 2 Dimensions 
 

Table D3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) 6.861 16.582  0.414 0.681 
Basic Math Skills 0.901 0.226 0.503 3.993 0.000 

a Dependent variable: Vector Understanding 2 Dimensions 
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APPENDIX E: REGRESSION IV 

Table E1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.547a 0.299 0.218 14.97891 
a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
 

Table E2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 4,118.748 5 823.750 3.671 0.007a 
Residual 9,647.814 43 224.368   
Total 13,766.562 48    

a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
b Dependent variable: Vector Understanding 
 

Table E3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) 11.531 15.794  0.730 0.469 
M1. Concepts of numbers 0.256 0.152 0.270 1.678 0.101 
M2. Proportionality 0.023 0.157 0.024 0.147 0.883 
M3. Coordinates 0.109 0.135 0.112 0.811 0.422 
M4. Basic geometry 0.517 0.181 0.431 2.858 0.007 
M5. Equations –0.025 0.200 –0.020 –0.123 0.902 

a Dependent variable: Vector Understanding 
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APPENDIX F: REGRESSION V 

Table F1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.422a 0.178 0.083 17.45607 
a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
 

Table F2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 2,844.802 5 568.960 1.867 0.120a 
Residual 13,102.719 43 304.714   
Total 15,947.521 48    

a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
b Dependent variable: Vector Understanding 1 Dimension 
 

Table F3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) 27.363 18.406  1.487 0.144 
M1. Concepts of numbers 0.077 0.178 0.076 0.434 0.666 
M2. Proportionality 0.103 0.182 0.099 0.562 0.577 
M3. Coordinates 0.154 0.157 0.146 0.977 0.334 
M4. Basic geometry 0.425 0.211 0.329 2.016 0.050 
M5. Equations –0.068 0.233 –0.052 –0.291 0.773 

a Dependent variable: Vector Understanding 1 Dimension 
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APPENDIX G: REGRESSION VI 

Table G1. Model summary 
R R square Adjusted R square Standard error of the estimate 

0.422a 0.589a 0.347 0.271 
a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
 

Table G2. ANOVAb 
 Sum of squares df Mean square F Significance 

Regression 6,320.108 5 1,264.022 4.568 0.002a 
Residual 11,898.962 43 276.720   
Total 18,219.070 48    

a Predictors: (Constant); M1. Concepts of numbers; M2. Proportionality; M3. Coordinates; M4. Basic geometry; M5. Equations 
b Dependent variable: Vector Understanding 2 Dimensions 
 

Table G3. Coefficientsa 

 

Unstandardized coefficients Standardized coefficients 

t Significance 

B Standard error Beta 

(Constant) –4.313 17.540  –0.246 0.807 
M1. Concepts of numbers 0.434 0.169 0.399 2.566 0.014 
M2. Proportionality –0.056 0.174 –0.051 –0.323 0.748 
M3. Coordinates 0.065 0.150 0.058 0.435 0.666 
M4. Basic geometry 0.609 0.201 0.441 3.030 0.004 
M5. Equations 0.019 0.222 0.013 0.084 0.933 

a Dependent variable: Vector Understanding 2 Dimensions 
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APPENDIX H: SAMPLE TEST QUESTION 

M3. Coordinates 

Name  : 

Student ID : 

Class  : 

Plot the following on a coordinate plane: 
1. Point A (6, –10) 
2. Point B (–5, –6) 
3. Point C (0, –14) 
4. A triangle with vertices at D (0, 12), E (6, 5), and F (–6, 5) 
5. A quadrilateral with vertices at G (–7, 3), H (–7, –3), I (–13, 3), and J (–13, –3) 
6. A circle with center at (10, 0) and radius 4 
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